- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Nobili, Camilla (2)
-
Drivas, Theodore D. (1)
-
Feng, Yuanyuan (1)
-
Mazzucato, Anna L. (1)
-
Nguyen, Huy Q. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Drivas, Theodore D.; Nguyen, Huy Q.; Nobili, Camilla (, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences)We study two-dimensional Rayleigh–Bénard convection with Navier-slip, fixed temperature boundary conditions and establish bounds on the Nusselt number. As the slip-length varies with Rayleigh number R a , this estimate interpolates between the Whitehead–Doering bound by R a 5 12 for free-slip conditions (Whitehead & Doering. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 , 244501) and the classical Doering–Constantin R a 1 2 bound (Doering & Constantin. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53 , 5957–5981). This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.more » « less
An official website of the United States government
